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In this paper, an approach is presented to develop a condition monitoring, fault 
detection, and supervision system to prevent in-service failures of electrical railway 
3-phase point machine mechanisms and detect slight changes in the state variables 
associated with some of the electric parameters of the machines. As a first step, a 
model of the electric point machine mechanism is discussed. In the following, state 
observers of the system are described, and techniques for enhanced condition 
monitoring are reviewed based on an analysis of the simulation of the point machine 
and a comparison of the data with laboratory and field test measurements. The range 
of failures of the point machines has been categorized into a set of basic modes. The 
state observer based on Kalman filter analysis allows an analysis of these modes of 
failure, based on the inputs and its model of system behavior and failures. The 
proposed method has the advantage of not requiring any equipment beyond a current 
sensor and the associated processing system.  
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1. Introduction 
The mode of transport and associated systems have 

been experiencing fundamental transformations since 
about 1980. The major outwardly apparent phenomena 
have been the launch of high-speed lines and trains, ever 
increasing levels of traffic in metropolitan areas and the 
enforced restructuring of railway companies. 

Internally, introducing the high-speed networks and 
increased traffic levels require that new technologies be 
adopted for both railway infrastructure and trains. All 
safety critical systems on the railway must be subject to 
rigorous control of performance and robust maintenance 
processes must be in place throughout their operational 
lives. Railway point machines (also known as points, 
depending on the railway where they are installed) are 

highly safety critical components of the railway. To 
deliver the required level of safe performance, they must 
operate with high precision; they have to be reliable and 
able to withstand the high static and dynamic loads, 
including impacts that result in accelerations of several 
hundreds. 

The approach proposed in this paper has advantage 
of not requiring any equipment beyond a current sensor 
and the associated processing system while algorithms 
described so far require load sensors in addition to the 
current sensor [1-2]. 

The purpose of the research reported in this paper 
was to develop an intelligent supervision system to 
prevent in-service failures of railway point machine 
mechanisms. The approach adopted was to detect slight 
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changes in the state variables associated with some of 
the electric parameters of the machines. As a first step, 
a model of the electric point machine mechanism is 
discussed in this paper. In the following, state observers 
of the system are described and based on an analysis of 
the results of the simulation of the electric point machine 
and a comparison of the data with laboratory and field 
tests measurements, techniques for enhanced condition 
monitoring are reviewed. The range of failures of the 
point machines has been categorized into a set of basic 
modes. The Kalman filter analysis allows an analysis of 
these modes of failure, based on the inputs from the 
system (current, power, torque etc.) and its own model 
of the system behavior and failures. The Kalman Filter 
is a data manipulation algorithm, implemented in system 
software, which combines noisy measurements obtained 
from a dynamic system with all the other known 
information about that system, to obtain the best 
possible estimate of the variables or states of that system 
[3-4]. For monitoring point condition, a mathematical 
model of the electric point machine was developed, in 
state space equation form. When a fault occurs, one or 
several state variables of the system will be affected. 
Different approaches and methods for the monitoring a 
system’s behavior, modelled as state space equations, 
have been introduced by researchers, for a wide range of 
applications [5-7]. The approach adopted by the authors 
is based on the observation that the loads applied to the 
point drive, through the point blades, follows a typical 
profile that is a function of the position of the blades 
throughout their normal or reverse movement. A full 
cycle of the point movement can be mapped as a time-
based profile. 

Given the nature of the faults and their location, i.e., 
recognizing the mode and type of the faults, it is possible 
to move beyond simply defining a threshold for each 
system residual. Much more data can be obtained by 
monitoring and analysis of the temporal behavior of 
each state variable, residual and/or measured parameter 
of the operation. For example, a fault in the mechanical 
transmission system can show its effect on the residuals 
just after its involvement in the point movement, i.e., 
from about 2 seconds after the start of the electric drive 
being switched on, while a fault in the electrical part, 
e.g., because of low voltage in the input, for example, 
may exhibits its effects immediately. 

The authors use well established models to describe 
the behavior of critical components of points system. 
They begin by describing the technical components, 
outline the associated failure modes and then summarize 
the modelling approach, before presenting the results of 
their simulation studies. For this purpose, the authors 

have been provided a very straightforward system model 
of the induction machine. The electrical drive of the 
S700K electric point machine is provided by a squirrel 
cage three-phase induction motor, operating at the 
constant speed [8-11]. 

Assuming that the three-phase AC voltage input of 
the system is balanced and that the stator winding is 
uniformly distributed, the motor can be modelled based 
on well-known 2-phase equivalent motor representation, 
using the Park transformation, as described by the other 
researchers [12-14]. The non-saturated symmetrical 
induction motor can be described in the synchronous d-
q frame by a set of fifth-order non-linear differential 
equations with respect to the rotor velocity ω , the 
component of rotor magnetic flux ψrd, ψrq and stator 
currents isd, isq. 

 

2. Materials and Methods 
In this section, electric point machine drives, fault 

modes of electric point drive systems, and state variable 
estimation using the Kalman filter are described. 

 

2.1. Electric Point Machine Drives 

Most standard point drives contain an actuating 
mechanism and a locking device. Drives normally also 
include a hand-operated crank and a selector lever to 
allow the power operated route setting or a local hand 
operation. A common arrangement is shown in Figure 1.  
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Figure 1: Electrically Operated Point Machine 

Mechanism 

The mechanism is divided into six major subsystems: 

 The motor unit which may include a contactor 
control arrangement and a terminal area;  
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 A gearbox comprising spur-gears and a worm 
reduction unit with overload clutch;  

 The dual control mechanism;  
 A controller subsystem with motor cut-off and 

detection contacts;  
 Mechanical linkages for locking of the point  
 Linkages for position detection. 

The latter components are sometimes replaced with 
the directly operated electrical contacts. Therefore, the 
standard point machine is a complex electromechanical 
equipment with many potential failure modes. 

Figure 1 shows a simplified diagram of the point 
drive and its linkages while a typical example of a point 
machine is represented in Figure 2. 

The principle of operation can be readily understood 
from the diagrams: The motor torque is first transferred 
to the clutch (integral to the mechanical transmission) 
and then to the gearbox which changes the rotating 
torques into an axial direction force. The points have two 
directions, either pushing out (normal), or pulling in 
(reverse). Once the points have moved to end position, 
the lock mechanism engages to prevent any movement 
of the blades while a train passes. As mentioned, the 
control unit of the machine includes a detection part, 
which senses the orientation of the point and also checks 
that the movement has reached its end position. After 
completion of the movement, the control unit will cut off 
the input voltage to the motor, so that the mechanism is 
not subjected to unnecessary loads. 

 
Figure 2: Electric Point Machine (S 700 K, Siemens) 

The term ‘point machine’ is frequently used in the 
railway industry as an all-embracing term covering both 
the electrical components and the set of mechanical 
elements that are located in the point machine housing, 
effectively, the subsystems shown in Figure 2. 

A complete electric drive system would normally 
also include the mechanical and electrical components 
outside the housing, e.g., the connecting linkages. 

 

2.2. Fault Modes of Electric Point Drive Systems 

As mentioned in Section 2, electric point machine 
drives are motor-driven devices connected to a 
mechanical transmission system (i.e., gearbox, clutch 
and mechanical linkages) which operates railway track 
point machines. Due to its important role in routing 
trains and its high safety criticality, electric point 
machine drives are \required to operate in a reliable, 
precise and safe condition. A failure analysis has been 
carried out to determine the most significant fault modes 
and to identify which parameters should be measured in 
a condition monitoring system. 

An electrically-operated point machine (S700 K), 
manufactured by Siemens and widely used within the 
Iranian railway network, has been analysed as part of 
this research. The point machine faults were categorized 
into three types:  

 Induction motor faults, that is, the stator winding 
faults, variations in input voltage of the point 
machines, aging etc.;  

 Mechanical transmission faults, such as the 
backlash or fractured teeth in one or more of the 
point machine gears;  

 External faults, such as the problems with the 
point machine blades, e.g., the point fracture, lack 
of lubrication, wear, extraneous objects, etc. 

Table 1 summarizes the share of each of the three 
mentioned fault categories in causing delays to train 
services through point failures, for the whole of the 
Iranian railway network. 

 
Table 1. Point Machine Fault Categories [5] 

Fault Category Fault and Failure % 

Mechanical 
fault 

Overload because of 
extraneous objects, point 
fracture, dry slide chairs, 
point mechanism wear, and 
unsuitable locking 
arrangement 

67 
 

Transmission 
problem 

Gear wear, gear fracture, 
lack of lubricant 7 

Electric drive 
problem 

Stator fault, variation of 
input voltage, wear of motor 26 
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Out of the faults listed in Table 1, dry slide chairs 
have the highest rate of occurrence. Dry slide chair faults 
are usually caused by an increase in the frictional 
resistance, due to a loss of lubrication and slide chair 
deterioration. 

This type of fault causes a gradual increase in the 
frictional load and, consequently, results in an increase 
in the thrust required to move the point blades and thus, 
results in a higher current demand from the machine. 

A timely alarm by the monitoring system, demanding 
lubrication and/or any required maintenance, will avoid 
breaks or cracks in the point machine blades and wear 
of the mechanism which can have further malign 
consequences, including derailment and need for heavy 
maintenance. 

Figure 3 presents a complete picture of the operation 
of the Kalman filter and the estimation algorithm of the 
variable states of the system. 

 

 
Figure 3: The Algorithm of Kalman Filter [15] 

3. System Modeling 
In this section, fault detection method, estimation of 

the state variables, and modeling of the railway three-
phase AC point machine are described. 

 

3.1. Fault Detection Method 

In the research covered by this paper, a Kalman filter 
has been used as a state observer. By monitoring and 
appropriate analysis of the system state variables and 
related residuals by means of the state observer it is 
possible to detect, identify and locate faults in the point 
machine drive. 

Although establishing simple thresholds for the state 
variables and residuals may assist the detection of faults 
and activate an alarm, this is not sufficient to identify 
and accurately locate faults. 

Because of the wide variety of faults which may 
occur in a point machine, as well as the wide possible 
range of values associated with faults, a sophisticated 
analysis of the signals, states and residuals is a necessity 
for fault location. 

The mechanism of an eelectric railway three-Phase 
point machine can be modelled in discrete state space 
equations as (1). 
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Where Xn, the states, Un, inputs and Yn is outputs. 
Assuming that the structure and the parameters of the 
electric point machine mechanism are known, a state 
observer can be used to reconstruct the ‘hidden’ state 
variables, based on measured inputs and outputs as (2). 
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Where ek(t), the residual, is the output error which 
acts through the observer matrix Ck on the reconstructed 
state vector −

kX̂ .  

 

3.2. Estimation of the State Variables 

According to Figure 3, R and Q are positive semi-
defined matrices and in general are used as non-
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correlated in the time. These characteristics define the 
covariance matrices as (3). 

The filter uses a prediction of the states X, which it 
compares with new measurements, by means of the 
measurement matrix C. The difference between the 
prediction and measurement residual can be used to 
arrive at a more accurate estimation of the states and it 
can also be used for the analysis of the behaviour of the 
system which is under study. 

In this paper, the Kalman filter has been used as a 
state observer, through which it is possible to estimate 
the internal states of the system, so as to be able to detect 
incipient system failures. 
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3.3. Modeling of the 3-Phase AC Point Machine 

Restricting our discussion, for the time being, to 
electric 3-phase point machines as defined before, we 
can classify them, in a first step as electromechanical 
equipment, consisting of the electrical and mechanical 
parts. 

Developing a precise mathematical model of the 
system requires sufficient knowledge about both the 
mechanical and electrical elements and also the interface 
between these. An overall model of the electric point 
machine consists of models of the induction motor and 
the mechanical transmission models. 

The dynamic model of an induction machine, in an 
arbitrary d-q reference frame, rotating at a speedω , can 
be obtained from the (4) equations, reproduced from 
recent works of the researchers [16-17]. 
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(4) 

In these equations, ω is the angular velocity of the 
rotor, Vsd and Vsq are stator voltages in the synchronous 
d-q frame and TL is the load torque. 

J is the rotor’s moment of inertia, P is the number of 
poles, Rr and Rs are rotor and stator resistances 
respectively, while Lr and Ls are the rotor and stator 
inductances, Lm is the mutual inductance, 

( )LLL Sm /1 2−=σ  is the total leakage coefficient, τr is 
the rotor time constant. 

The mechanical transmission system model can be 
obtained as (5). 
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(5) 

The torque Tl is proportional to the amount of 
throwing force f and also the radius of the gear 2R . It can 
be modelled as (6). 

2RfTl ×=  (6) 

Figure 4 represents the arrangement of the gearbox 
and the mechanical load. 

 
Figure 4: Gearbox Model with Mechanical Load 

Returning to the state equations (1) for the electric 
point machine, Xn is the state variable vector containing 
[isd, isq, ψrd, ψrq, ω], Un is the input vector given as [Vsd, 
Vsq] and Yn the output vector as  [isd, isq], as (7). 



 Condition Monitoring and Supervision of the Electric Railway 3-Phase Point Machines in Railway Signalling Systems Using the State Observer 

 

International Journal of Railway Research (IJRARE)    53 
 

1 0 0 0 0
0 1 0 0 0

sd
sqsd
rd

sq n rq

i
ii

i ψ
ψ
ω

 
      =       
 
 

 
(7) 

The researchers used a relatively simple approach to 
detect incipient failures in points systems, focusing on 
the mechanical components. They studied basic features 
of signals, such as peak levels and timings between 
peaks and troughs. The authors of the present paper, by 
contrast, have modelled the electrical drive of the 
system, identifying faults by means of filtering.  

 
 
 

4. Results and Discussion 
The authors’ contribution to fault identification is in 

the simulation of the operation of the electric point 
machine and associated mechanism, using MATLAB 
7.1 and the formulae described above. 

The characteristics of the three-phase squirrel cage 
induction motor were chosen as follows: 4-pole, class A 
design, rated at 700 W, with a 400 V, 50 Hz three-phase 
supply and a 2 A nominal current. A range of faults were 
introduced into the machine models. Figure 5, Figure 6 
and Figure 7 show the variation of the state variables as 
functions of time. 

The motor current rises very steeply on switch-on, 
the well-known behaviour of the three-phase induction 
machine. Phase 1 represents the period during which the 
machine runs freely; phase 2 is the transition period 
between no-load running and full load operation while 
phase 3 represents the period during which the point 
blade movement takes place. 

 
Figure 5: Potential Fault Locations in Measured State 

Variables 

Figure 5 represents isd and isq, the stator currents, as 
functions of time. These were defined as X1 and X2 in the 
electric point machine model. When the behaviour of the 
motor changes, variations are expected in several state 
variables, including the stator currents. Simulated 
machine faults were introduced in phase 1 of the 
operating cycle shown in Figure 6. 

Similar changes in the performance of the gear box 
and point blades were introduced in phases 2 and 3 of 
the operating cycle, respectively. The focus of the 
present paper is on the variations in the state variables 
and Kalman filter residuals that appear in phase 3 of the 
operating cycle, permitting close monitoring of the point 
blades’ condition. In normal and no-fault conditions, the 
parameters isd and isq reach levels of 3.25 A and 0.5 A, 
respectively, after the switch-on oscillations have died 
down. These values change to 2.9 A and 1.8 A at the 
start of the phase 2 (after 2 seconds) of the point machine 
operation cycle.  This is when the electric machine starts 
to move the blades, allowing the mechanical load to 
affect the machine current.  

Figure 6 shows ψrd, ψrq,, the rotor fluxes, estimated 
by the Kalman filter for the no-fault condition. These 
two parameters have been modelled as state variables X3 

and X4. They cannot be measured directly and are thus 
determined by means of the state observer. The rotor 
speed ω is another variable that has been introduced in 
the machine model. In the no-load condition the rotor 
speed reaches a value of 314 rad/s while, in the loaded 
situation, when the machine is acting against a load of 
5500 N, the speed reduces to 292 rad/s. 

 
Figure 6: Estimation of State Variables (X3, X4) with 

Kalman Filter 

Figure 7, shows the variation of this parameter for a 
machine operating cycle. It must be mentioned that the 
initial oscillations are consequences of the modelling 
approach used and do not represent mechanical 
oscillations of the drive. 
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Figure 7: No Fault Rotor Speed (X5) Estimated 

 
 
 
 

4.1. Point Fault Due to Dry Slide Chairs  

As mentioned before, the majority of point machine 
failures are associated with dry slide chairs or movement 
of the sleepers and rails, resulting from the relatively 
lack of stability of ballasted track. Conventional railway 
points require regular adjustments to compensate for 
wear in point machine blades, cams, hinges of linkages 
and detection point machines. The slide-plates on which 
the points move require regular lubrication to ensure 
reliable low friction operation and longer life. In normal 
conditions, the maximum throwing force required to 
move the point machine blades in the normal or reverse 
directions is 5500 N. Due to dryness of the slide chairs, 
this force can increase to a value of 8000 N.  

 
Figure 8: Stator Current of the Induction Motor of a Point 

Mechanism Suffering Dry Chairs 

Direct measurement of this force is possible, by 
means of load cells. This approach has been adopted for 
several point condition monitoring systems. However, 
recognising the difficulties in installation, calibration 
and maintenance of the sensors in the harsh railway 
environment, the authors of the present paper decided to 
determine and analyse the forces indirectly, through 

estimation of the motor state variables. Their approach 
does not rely on a mechanical linkage to detect incipient 
failures in the mechanism. 

Figure 8 shows the amplitude of the stator current 
(isd), when a dry slide chair condition occurs in the point 
mechanism. The steady state level of the current in phase 
3 of the operation increases right from the start of the 
transitional phase 2 of the cycle.  

 
Figure 9: Change in the Current Due to a Friction 

Coefficient Increase 

Figure 9 shows the changes in the stator current as a 
result of an increase in the friction coefficient in the slide 
chairs. As this diagram shows, the rate of increase is 
higher when the friction coefficient rises substantially 
above the normal conditions. 

As the dryness rises over time, the throwing load to 
achieve a point movement is increased. This is directly 
related to the operating force. 

 
Figure 10: Induction Motor Rotor Flux of Point 

Mechanism in Wear Condition 

Figure 10 and Figure 11 represent the variations in 
estimated rotor flux and speed, in a faulty condition due 
to point fault. 
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Figure 8, Figure 10 and Figure 11 are used to show 
the changes in the state variables due to dry slide chairs 
during the second phase.  

The value of isq in phase 2, is increased from 2.8 A to 
6.3 A and the rotor speed is reduced to 175 rad/s, 
compared to its original value which was 270 rad/s, 
where the load of point machine is increased to 7900 N. 

 
Figure 11: Variation of Speed Estimation Using Kalman 

Filter in Wear Condition 

 

4.2. Failure Due to External Obstacles  

Figure 12, Figure 13, and Figure 14 show that for 
identification of the mentioned source of failure an 
increase in the stator current and also a reduction in the 
flux and speed of the rotor from second three afterwards, 
should be detected. 

The time of this event depends on the size of the 
obstacles, since a bigger obstacle causes an earlier 
involvement of the blades with the obstacles and so an 
earlier change in the machine variables.  

 
Figure 12: Increase in Stator Current Due to External 

Obstacles 

An increase in the throwing load can be a result of 
different causes such as lack of lubrication, increase in 
friction coefficient due to changes in weather condition, 
inadequate point adjustments and/or existence of the 
obstacles between the point blade and stock rail.  

 
Figure 13: Decrease in Stator Flux Due to External 

Obstacles 

The external obstacles existence can be distinguished 
from other causes, considering that this fault represents 
itself on stator current and in the latest stages of the point 
movement cycle.  

 
Figure 14: Reduction in Rotor Speed Due to External 

Obstacles 

Table 2 provides a numerical comparison between 
different state variable values in normal and faulty con-
ditions, which have been extracted from the above 
diagrams.  

 
Table 2: Numerical Comparison of the State Variable 

Values in Normal and Faulty Conditions 

Wm(rad/s) Fsq(wb) Fsd(wb) Isq(A) Isd(A) Time 
315 0.10 0.90 0.50 3.20 0<t<2 
270 0.00 0.80 3.00 2.80 2<t<3 
163 -0.14 0.55 6.70 3.80 3<t<7 

 
The temporal behaviour of the state variables is the 

main parameter supporting the identification of the 
faults between the two above mentioned fault modes. In 
other words, dry slide chair will cause an increase in the 
stator current from the beginning of the second phase of 
cycle while existence of an obstacle will show its effects 
on the stator current from a later time, based on the size 
of the obstacle. 

 

5. Conclusion 
The results of the analysis represented in this paper, 

shows that a perfect monitoring of the point machines, 
using the Kalman filter state observer, is achievable. 
Although detection of the point machine faults, through 
monitoring of some variables in the system, has been the 
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subject of various researches before, but a reliable 
identification and location of the faults needed further 
analysis and intelligence in the monitoring systems. The 
algorithms proposed in this paper can provide the ability 
of detection and identification of the faults, using the 
minimum number of sensors. It is important to notice 
that not all alterations in the point machine variables are 
because of a fault in the system. For example, the 
machine represents higher throwing forces just after its 
installation and will be reduced to a normal level after 
some period of time. Recording and consideration of the 
system age and operational history can help in 
distinguishing the changes in the machine variables 
which are resulted by a fault or are due to other causes. 
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